Rapid convergence to an equilibrium state in kleptoparasitic populations.

نویسندگان

  • R M Luther
  • M Broom
چکیده

Previous papers have modelled the behaviour of populations which are subject to kleptoparasitism, and found those ecological situations in which kleptoparasitism should occur. Individuals were considered to be in one of several states, and an equilibrium distribution for the population was found. It was then assumed, for analytical purposes but without proof, that the population was actually in that equilibrium. In this paper, we show that the equilibrium is a stable one, and that it is reached in a relatively short time for all reasonable values of the ecological parameters. Thus, a population may be expected to spend most of the time in equilibrium, and this assumption of these previous works is justified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of the Domain of Attraction of Free Tumor Equilibrium Point for Perturbed Tumor Immunotherapy Model

In this paper, we are going to estimate the domain of attraction of tumor-free equilibrium points in a perturbed cancer tumor model describing the tumor-immune system competition dynamics. The proposed method is based on an optimization problem solution for a chosen Lyapunov function that can be casted in terms of Linear Matrix Inequalities constraint and Taylor expansion of nonlinear terms. We...

متن کامل

Reduction of Reservoir Fluid Equilibrium Calculation for Peng-Robinson EOS with Zero Interaction Coefficients

For some of the EOS models the dimension of equilibrium problem can be reduced. Stability and difficulties in implementation are among the problems of flash calculation. In this work, a new reduction technique is presented to prepare a reduced number of equilibrium equations. Afterwards, a number of appropriate solution variables are selected for the prepared equation system to solve the equati...

متن کامل

A modified Mann iterative scheme for a sequence of‎ ‎nonexpansive mappings and a monotone mapping with applications

‎In a real Hilbert space‎, ‎an iterative scheme is considered to‎ ‎obtain strong convergence which is an essential tool to find a‎ ‎common fixed point for a countable family of nonexpansive mappings‎ ‎and the solution of a variational inequality problem governed by a‎ ‎monotone mapping‎. ‎In this paper‎, ‎we give a procedure which results‎ ‎in developing Shehu's result to solve equilibrium prob...

متن کامل

Fast Convergence in Population Games

A stochastic learning dynamic exhibits fast convergence in a population game if the expected waiting time until the process comes near a Nash equilibrium is bounded above for all sufficiently large populations. We propose a novel family of learning dynamics that exhibits fast convergence for a large class of population games that includes coordination games, potential games, and supermodular ga...

متن کامل

Equilibrium problems and fixed point problems for nonspreading-type mappings in hilbert space

In this paper by using the idea of mean convergence, weintroduce an iterative scheme for finding a common element of theset of solutions of an equilibrium problem and the fixed points setof a nonspreading-type mappings in Hilbert space. A strongconvergence theorem of the proposed iterative scheme is establishedunder some control conditions. The main result of this paper extendthe results obtain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of mathematical biology

دوره 48 3  شماره 

صفحات  -

تاریخ انتشار 2004